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1 Motivation
Recalling the history of the physics, the problem of scattering is encountered in almost every
region in physics. For example, the incident electron to the atom, gravitational slingshot,
and even in statistical theory we need the scattering to construct non-equibrium theory etc.

However, though we have known the significance of the scattering amplitude, the methods
we have learnt are almost all classical. We actually are lacking knowledge how to solve it in
quantum.

So, today I’d like to introduce the topic of scattering amplitude in quantum mechanics.
And I’d like to talk mostly in formal theory, which means we would mainly focus on the
solution’s general math structure instead of the exact solution under certain circumstances.

You can get a draft of what will going to be talked from this contents. In the application
section, we will give some result that can be deduced out from the general form of scattering
amplitude.

So now, lets begin.

2 Scattering Amplitude In Quantum Mechanics
First, let’s look into the problem of Scattering from the classical sense. We will go deeper
into the quantum description later. We present the problem definition here.

Theorem 2.1

Consider an particle incident from the infinite distance on the left. It has energy E
and point to the right, and for the central is at a distance of b. We would like to know
the exit angle 𝜃 (𝑏, 𝐸) as a function of b and E

Fig. 1. RutherfordScattering
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Under the frame of classical Mechanics, the scattering problem is abstracted into the problem
of central force. So we can solve the scattering problem within the Conservation of Angular
Momentum.

Theorem 2.2

The problem of central force can be described into solving:{
𝐿 =𝑚𝑟 2 𝑑𝜙

𝑑𝑡
=𝑚𝑣0𝑏

𝑣⊥ = 𝑣0 sin𝜃

We can find the exit angle is now actually an ODE problem:

d𝑣⊥ = 𝐹⊥
𝑚
d𝑡

𝑣0dsin𝜃 = 𝐹 sin𝜙
𝑚

d𝑡

We describe the classical picture and the result. However, what about in the quantum
mechanics? Maybe someone will say :” How about just correspond the problem definition
direct into the quantum mechanics?” Alright, that seems great. But we will experience
great challenge at the particle description, In quantum mechanics the particle is actually
described in wave packet. Though we can just solve out the Schrodinger Equation and find
all the eigenfunction to describe the particle, but maybe we can think a little bit more into
the essence of the scattering problem.

While we are doing scattering problem in classical, we are talking about the particle position
for the sake that position is one of the limited variable that describe the state. Meanwhile, we
are discussing only the exit angle because it’s an one-to-one correspondence in the classical
situation. From the above description, you may generalize and say: ”Hey, the scattering
problem is eventually finding some mapping from one state to the others!” Yeah, this is an
excellent generalization of the classical scattering problem in quantum way.

So, from the discussion above, what we will actually calculate in quantum mechanics is the
amplitude from 𝜓𝛼 to 𝜓𝛽 , This is why we call it scattering amplitude. We give the problem
definition here:
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Theorem 2.3

For a physical system with 𝑉 → 0 at infinite distance:

𝐻̂ =
𝑝2

2𝑚
+ ˆ𝑉 (𝑟 )

We would like to know the amplitude from 𝜓𝛼 to 𝜓𝛽

Let’s go into the next section.

3 S-Matrix
At the first sight of the word ”S-Matrix”, you might find it a bit confusing, what is the S
mean here, where does this matrix origin? Actually, here you should see the letter ”S” as
the abbreviation of ”scattering”, and the matrix as the corelation between different state.

3.1 In and Out State

While we are treating interaction between particles, we actually want to know the scattering
between the states right before the interaction and right after the interaction as:

𝐻̂𝜓𝛼 = 𝐸𝛼𝜓
±
𝛼

These two states are always called In and Out states. But we will encounter difficulty
solving out the exact expression at this two point. So finding a way to describe this two
states should be proposed. A good way to do this is implied by the approximated-free at
infinite distance, because the Scattering Problem has the property that 𝑉 → 0 at infinite.

So from the free property at infinite, we can use free hamiltonian 𝐻0 to describe the state
at 𝑡 → ±∞. And by using the system hamiltonian 𝐻̂ = 𝐻0 +𝑉 to do time-evolution back to
the In and Out State point.

Fig. 2. Some Intuitive Picture

4



So now, what we have to deal is just to find the free-state on the infinite distance. And this
can be done by just reversal evolve the free-state in the bulk. Let 𝜙±

𝛼 indicates the state on
the infinite boundary corresponding 𝜓±

𝛼 , so we will have an equation (Comes from the last
paragraph’s statement, we are just doing something like time evolution or reference frame
transformation, each can be explained under passive or active view on transformation):

𝐻0𝜙𝛼 = 𝐸𝛼𝜙𝛼

𝜓±
𝛼 = Ω(∓∞)𝜙𝛼 , Ω(𝜏) = 𝑒𝑖𝐻𝜏𝑒−𝑖𝐻0𝜏

(1)

After we give out the definition of In and Out state, we can finally define the S-Matrix:

Theorem 3.1

For each in state 𝜓 +
𝛼 and out state 𝜓 −

𝛽 , there exist a S-Matrix element 𝑆𝛼𝛽 :

𝑆𝛼𝛽 =
〈
𝜓 −
𝛽 |𝜓 +

𝛼

〉
And also from 1, we know the operator expression of Ŝ:

Ŝ = Ω(+∞)Ω†(−∞) = 𝑈 (+∞,−∞) (2)

Where 𝑈 (𝜏, 𝜏0) ≡ exp(𝑖𝐻0𝜏) exp(−𝑖𝐻 (𝜏 − 𝜏0)) exp(−𝑖𝐻0𝜏0)

3.2 Lippmann-Schwinger Equation

Though we can just use the 2 to give some further application, but some detailed general
math structure is already hidden in the matrix element, we would like to find it out. But
to avoid using the explicit expression of the 𝐻̂ , we would like to introduce the Lippmann-
Schwinger Equation to see some conservation law in the matrix element.

Theorem 3.2

For hamiltonian like 𝐻 = 𝐻0 +𝑉 , if we have :

𝐻0 |𝜙⟩ = 𝐸 |𝜙⟩
(𝐻0 +𝑉 ) |𝜓 ⟩ = 𝐸 |𝜓 ⟩
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Then we have an iterative solution:

|𝜓±⟩ = |𝜙⟩ + 1
𝐸 − 𝐻0 ± 𝑖𝜖

𝑉 |𝜓±⟩ (3)

From the above subsection, we know the In and Out states at 𝑡 → ±∞ have the properties
of:

𝜓±
𝛼 → 𝜙𝛼

Meanwhile, from the definition of S-matrix element 2, we also have：

𝜓±
𝛽 =

∫
d𝛼𝑆𝛽𝛼𝜓±

𝛼 (4)

So from the above two equation, we actually can derive:

𝜓±
𝛽 =

∫
d𝛼𝜙𝛼 (5)

Now just take the Lippmann-Schwinger Equation 3 into 6, then the structure of S-Matrix
element is:

𝑆𝛼𝛽 = 𝛿 (𝛽 − 𝛼) − 2𝜋𝑖𝛿 (𝐸𝛼 − 𝐸𝛽)𝑇𝛽𝛼 (6)

where 𝑇𝛽𝛼 =
〈
𝜙𝛽

��𝑉 ��𝜓 +
𝛼

〉
. Now let’s explain what does the matrix element means, the first

term tells us the behavior of free state, and the second term tells us only the scattering
state follows the energy conservation law can be accepted.

3.3 Formal Solution of S-Matrix

So, is free approximate state at infinite distance the only constrains we can use? Actually
no, there are still constrains from various symmetry law. Like space translational invariance,
if we apply this symmetry, we could get a much more useful form of S-Matrix:

Theorem 3.3

The S-Matrix element with translational invariance:

𝑆𝛽𝛼 − 𝛿 (𝛼 − 𝛽) = 𝛿 (𝐸𝛼 − 𝐸𝛽)𝛿3(𝑃𝛼 − 𝑃𝛽)𝑀𝛽𝛼 (7)

Here we minus the 𝛿 (𝛼 − 𝛽) to leave out the non-interaction state, and the 𝑀𝛽𝛼 is
smooth function of momentum.
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4 Application
So, now we can give some useful application of the Formal Solution of the scattering ampli-
tude. And if time accepts, we can take a glance at the graph method.

4.1 Transition Probability

4.1.1 Box-Method

The transition probability has great significant role in particle experiment, as described in
the motivation part. So the relation between the scattering amplitude and the scattering
cross-section must be discussed.

However, during our discussion of the amplitude, we encountered the factor 𝛿4(𝑝𝛼 − 𝑝𝛽).
In general integral, it can be explained by a momentum selector, but in discussion of the
observable, the square of the delta function must be understand, so how we understand the
square part?

The solution is given by the Box Method. What makes us confusing about the square delta
function is because the well defined function of a selector in integral is not established in
the full euclidean space, so we can’t tell the math structure of the delta function. However,
if we consider space with finite volume, we could get the selector function’s math structure,
and next we generalize to infinite volume, we could keep the math structure.

The idea of box method is imagining the system is contained in a Volume V box, and
interaction happen during time T, this tells us the relation between the matrix-element in
box and the general:

𝑆𝐵𝑜𝑥𝛽𝛼 =

(
(2𝜋ℏ)3
𝑉

) (𝑁𝛼+𝑁𝛽 )/2

𝑆𝛽𝛼 (8)

Here 𝑁𝛼 and 𝑁𝛽 means the particle number in the in and out state. And now we can consider
the transition probability:

Γ(𝛼 → 𝛽) = 𝑃 (𝛼→𝛽 )
𝑇

∝ 𝑉 1−𝑁𝛼−𝑁𝛽 |𝑀𝛽𝛼 |2
(9)

And also in experiment, what we measure is always the transition probability into several
states collection, so we’d better also give the transition probability into d𝛽:

dΓ(𝛼 → 𝛽) ∝ 𝑉 1−𝑁𝛼 |𝑀𝛽𝛼 |2d𝛽 (10)
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4.1.2 𝑁𝛼 = 1𝑎𝑛𝑑2 Case

The above result 10 actually has two special situation, which the interfering factor of the
decay rate is quite special:

Theorem 4.1

• 𝑁𝛼 = 1, independent of the circumstance volume

• 𝑁𝛼 = 2, proportion to the final state particle density

5 Conclusion
From all the discussion above, we have seen the significance of the scattering amplitude.
Whats more, as we mentioned in the last part, the scattering amplitude also build a bridge
to the QFT. And in currently research, people also try to compute the amplitude under
more Symmetry Restriction. The computation result not only give us what the experiment
will be, but also inspire some mathmatical region.
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